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1. INTRODUCTION

Since many ionospheric processes and the motion of charged particles in the ionosphere and the
radiation belts are determined by Earth’s magnetic field, it is desirable to use the geomagnetic
domain for correlation with observations. For near Earth applications, the geomagnetic locations
are usually expressed in Earth fixed geocentric coordinates, using a simple 6371.2 km radius
“spherical Earth” model, which differs slightly in altitude and latitude from the usual geodetic
“oblate Earth” model. In the early period of satellite exploration of the magnetosphere, the use
of a coordinate system, geomagnetic coordinates, based upon a centered but tilted dipole
representation of Earth’s magnetic field was often sufficient for most applications. As more
precise measurements became possible, the need arose for a coordinate system which would more
closely represent the actual magnetic field. In 1958 Hultqvist published two papers [Hultgvist,
1958a; 1958b] defining a corrected magnetic coordinate system taking into account higher order
terms in the spherical harmonic expansion of the 1945 magnetic field model. A real field line from
Earth’s surface may be traced to the centered dipole equator. This point is next defined to be
equivalent to a line trace along a centered dipole field. The latitude and longitude of the point in
dipole coordinates are the desired “corrected” geomagnetic coordinates.

In 1965 Hakura used the higher order terms in the spherical harmonic expansion of Earth’s
magnetic field to compute tables and maps of corrected geomagnetic coordinates. Since the actual
magnetic field changes with time, it is necessary to generate new tables and maps. Gustafsson
[1970 and 1984] has provided revised corrected geomagnetic coordinates based upon the
International Geomagnetic Reference Field Epoch 1965 and Epoch 1980 (or IGRF65 and
IGRF80). The earlier paper defines a set of hypergeometric functions which may be used to
compute the corrections for a spherical harmonic representation of the magnetic field of order up
to 7. Line tracing with modern computers makes the analytic approach unnecessary while
permitting the use of higher order spherical harmonic field representations. More recently
Gustafsson, et al. [1992] have performed similar calculations for the IGRF 1990 magnetic field
model. The corrected geomagnetic coordinates provided in the tables described above are for 0
km altitude. Using this definition of CGM, there are areas of Earth’s surface where magnetic field
line traces never reach the dipole equator plane. Gustafsson, et al. [1984] describe various
interpolation methods to fill in these forbidden areas.

True corrected geomagnetic coordinates are defined only at ground level, but a method is needed
to provide geomagnetic coordinates at all altitudes. This report describes the development and
implementation of such a method, which properly should be called “altitude adjusted corrected
geomagnetic coordinates”. Introduction of new terminology appears unwarranted however, and
the altitude dependent conversions as well are referred to as corrected geomagnetic coordinates.
Since the same procedure of field line tracing to the Earth-centered dipole equator applies, all
points along a field line (on one side of the magnetic equator) have the same corrected
geomagnetic coordinates (CGM). In practice, for non-zero altitudes, the actual approach taken is
to trace down to zero altitude, and to then look up conventional CGM coordinates and interpolate
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using the tables printed in the above references. For IGRF90 and IGRF95 the look up and
interpolation procedure has been automated in routines which we shall refer to as CGLALO90 and
CGLALO®95.

For non-zero altitudes at or near the magnetic equator, the field lines trace down to higher
geomagnetic latitudes. The higher the altitude, the greater is the separation of the foot of the field
line from the dip equator, so that low CGM latitudes do not exist for non-zero altitudes, and a
significant discontinuity in latitude is present.

In a recent paper, Baker and Wing [1989] describe an alternative method to compute corrected
geomagnetic coordinates. In their method, the corrected geomagnetic coordinates (and the
corresponding inverses) are computed by evaluation of functions for the X, Y, and Z components
of a unit vector obtained from a fourth order spherical harmonic expansion. They first computed
the coefficients for the X, Y, Z components of a unit vector in the magnetic dipole coordinates
for both the forward and inverse transformations for altitudes 0, 150, 300 and 450 km. They
developed an interpolation/extrapolation scheme for computing the spherical harmonic coefficients
for altitudes from O to 2000 km altitude. Since they were primarily concerned with representing
higher CGM latitudes, the equatorial problem described above was not taken into account. As a
result, the features of the South Atlantic Anomaly and the equatorial region are not well
represented in the Baker and Wing computation. In the latter, the spherical harmonic expansion
computations were performed in dipole magnetic coordinates. The coordinate conversions between
geographic and dipole coordinates were accomplished using rotation matrices.

An improved method to calculate the CGM coordinates and their inverses at altitudes from 0 to
2000 km has been described in Bhavnani and Hein (1994). This approach is similar in many
respects to that of Baker and Wing, but provides an improved representation of the South Atlantic
Anomaly region, and a solution to the equatorial discontinuity problem. Spherical harmonic fits
to the direct and inverse transformations were performed for altitudes 0, 300 and 1200 km, and
the altitude dependence of the spherical harmonic coefficients was expressed as a quadratic
interpolation and extrapolation to the individual coefficients using altitude/1200 km as the
independent variable. Since the quadratic fit is uniquely determined by the values at the three
altitudes, the representation of the spherical harmonic coefficients by the fit at those altitudes is
exact.

In that paper, we indicated that improvements to the algorithm used were desirable, and we
suggested that the use of an offset dipole may provide better results. We have carefully examined
the possibility of making such improvements both by using an offset dipole, and by developing
an improved altitude adjustment algorithm with the expectation that we would be able to make
further improvements in the South Atlantic Anomaly region and in the equatorial discontinuity
problem. However, we found that these approaches required much more complex code to account
for the singular nature of the South Atlantic Anomaly, with poorer results near the poles, than that
obtained with the original code. We then abandoned the offset dipole idea, and instead, sought to
make improvements in the original algorithm.



In this paper we report improvements in the method described in our original paper, and the
successful expansion of the altitude range from 0 - 2000 km to O - 7200 km. To simplify the
presentation, portions of the original Bhavnani and Hein paper are incorporated in this report.

In Section 2 we describe the methodology used for the solution of this problem. Although it is,
in principle, possible to expand the altitude range further, it would probably be necessary to take
into account the external field (ring currents) for altitudes greater than 7200 km.

In Section 3 we provide a detailed description of the computation of the spherical harmonic
coefficients. In Section 4 we describe the results obtained using this method, together with
graphs.

In Section 5 we describe the use of the revised algorithm for field line tracing. We provide a
description of the accuracy, and limitations of the algorithm for this application. Maps (in Geographic
Coordinates) displaying error ranges (maximum difference along a precise field line trace, and the use
of the algorithm) are displayed for a uniform latitude/longitude grid, for field line traces from 7200
km to ground and 800 km to ground.

In Section 6 we provide conclusions, and some comments concerning the possibilities of improving
the algorithm for line tracing applications.

2. METHODOLOGY

For the analysis of observations from satellites in circular or near circular orbits, the use of CGM
tables and interpolation methods for a fixed altitude, such as found in CGLALQ95, are well
suited. For satellites in more eccentric orbits, and other applications at non-uniform altitudes, a
functional representation in terms of a spherical harmonic expansion, such as implemented by
Baker and Wing is more appropriate, because a single routine can inherently interpolate smoothly
over the entire region of space of interest. The equatorial discontinuity problem is handled by
using an auxiliary coordinate system (magnetic dipole coordinates at altitude) to compute the
spherical harmonic coefficients which are incorporated into the code. A simple mapping is used
to transform to and from dipole coordinates at altitude and dipole coordinates at 0 km altitude.
The lengthier calculations involved are usually not a burden with modern computers, and
computational efficiency techniques can be incorporated when working at a constant altitude.

In using a spherical harmonic representation of a function defined on a spherical surface, where
the function is initially specified by a table of values, there must be sufficiently dense data in the
table, and the order of the spherical harmonic expansion must be chosen to adequately represent
the function at the tabulated values.




The spherical harmonic coefficients for a function f; @, ,,, are usually computed from the following
integrals.

a,, = [ f0.9) 1,,(8,¢) & 1))

To compute these integrals it is necessary to have a completely defined uniform grid. We found
that a table of values between -88 and 88 degrees latitude at 2 degree intervals, and O - 350
degrees in longitude at ten degree intervals is adequate for a tenth order spherical harmonic
expansion. All the computations described here were made with such a coordinate grid; in the
remainder of this report, such a grid will be referred to as a standard coordinate grid.

A significant aspect of spherical harmonic fitting is the problem of convergence. In the theory of
Fourier series, there is a problem with the convergence of the partial sums of the Fourier
expansion for a function in the vicinity of a discontinuity. A typical example is the case of a step
function, in which the partial sums oscillate in the vicinity of the discontinuity. Similar, but less
pronounced behavior, occurs when the function to be represented is continuous, but has a
discontinuous first derivative.

To avoid this problem (Gibbs’ phenomenon), the functions chosen for the spherical harmonic
expansion must be a periodic function in longitude (or its equivalent) and have no discontinuities.
For that reason it is not practical to use the longitude variable itself. The simplest reasonable
choice of functions are the complex exponentials exp i0 and exp i¢ (or their real two-dimensional
vector equivalents) where 6 and ¢ are the co-latitude and longitude respectively. However, using
this approach, problems arise with the quality of the spherical harmonic expansion fit to the actual
data near the magnetic poles. We choose the unit vector approach used by Baker and Wing
because the spherical harmonic expansion fit does not exhibit any pathology in the vicinity of the
magnetic poles.

Since CGM values for non-zero altitudes have a discontinuity near the magnetic equator, it is not
practical to use a ground-based dipole coordinate system for either computing the spherical
harmonic coefficients or the spherical harmonic expansion. We used an at-altitude dipole-
coordinate system at each of the selected 24 altitudes between 0 and 7200 km to perform these
computations. The altitude dependent mapping described above to transform between the actual
CGM latitude Ay and an at-altitude dipole latitude A4, is given by:

Iti
005" A pose = (1 + a_;_;_z%[_z_km_]] cos® Acgy 2

and is identical to that used in previous versions of the code. The use of the at-altitude dipole
coordinate system given by the above transformation (and its inverse) effectively “closes” the
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discontinuity, permitting the calculation of the spherical harmonic coefficients at the selected
reference altitudes. Other improvements in the closure of the discontinuity were also made, and
are described in Section 3.

To compute the spherical harmonic expansion at arbitrary altitudes between 0 and 7200 km, the
24 sets of spherical harmonic coefficients for the reference altitudes were fit to a fourth order
polynomial fit (using altitude/7200 as the independent variable).

For the computation of the geocentric to CGM coordinates, the procedure used was as follows:

(1) Compute (if new altitude was different from the last) the altitude dependent spherical harmonic
coefficients.

(2) Compute the spherical harmonic expansion for the X, Y, Z components of the unit vector
describing the orientation of the transformed point in the altitude dependent dipole coordinate
system.

(3) Compute latitude and longitude of point, and apply the altitude transformation to the at-altitude
dipole latitude. Return the computed corrected latitude and longitude values.

For the inverse computation, the procedure used was as follows:

(1) Compute (if new altitude was different from the last) the altitude dependent spherical harmonic
coefficients for the inverse calculation.

(2) Transform the CGM input latitude to the at-altitude dipole latitude. Set error return flag and
default return value if input latitude was invalid.

(3) Compute the spherical harmonic expansion for the X, Y, Z components of the unit vector
describing the orientation of the transformed point in geocentric coordinate system. Return the
computed geocentric latitude and longitude values.




3. GENERATION OF THE SPHERICAL HARMONIC COEFFICIENTS

The spherical harmonic coefficients were computed for the components of a unit vector in the
target coordinate systems, as defined by the direction cosines for each of the 24 selected altitudes.
For each altitude, the coefficients were computed using the standard coordinate grid tables using
the standard formulas for computing spherical harmonic coefficients.

3.1 GEOCENTRIC TO CGM TRANSFORMATION

For each geographic longitude in the grid, a code was used to compute the geographic latitude of
the dip equator. This means that the dip equator becomes the actual equator for the CGM
coordinate system. Note that the dip equator does not lie in a plane in Geographic coordinates.

For 0 km altitude, the GEOCGM code, which implements the Gustafsson et al. definition of
Corrected Geomagnetic Coordinates, was used to produce a table of CGM coordinates
corresponding to a standard geographic coordinate grid. From this table, the entries within a band
of ~15 degrees around the magnetic dip equator were deleted, and replaced by values obtained
using a spline fit, with the added constraint that the spline curve passes through the coordinates
of the dip equator. The modified table was incorporated into IGRF 95 (CGLALO95) version of
a FORTRAN subroutine CGLALO which uses a look-up table and interpolation procedure to
compute CGM coordinates for arbitrary points at 0 km altitude.

For each of the 23 non-zero altitude values, the field lines for the IGRF 95 magnetic field model
from altitude to ground were computed using a precise field line trace routine. CGLALO95 was
then used to compute the CGM tables for the respective altitudes. For the expanded version of the
code (0 - 7200 km) the altitude dependent latitude adjustment algorithm was applied, and a spline
fit through the dip equator was performed for latitude in a similar manner as was used in the 0 km
altitude case. This procedure resulted in a uniform width to the altitude-dependent gap, and
consequently improved spherical harmonic coefficient fits, by eliminating “clumping” in the
vicinity of the South Atlantic anomaly. The 23 resulting tables were used to generate the spherical
harmonic coefficient fits for the selected altitudes. For each spherical harmonic coefficient a fourth
order polynomial fits was computed using altitude/7200 km as the independent variable. In the
fitting process, weighting of the various altitude terms were performed, in such a way that only
small deviations were permitted in the 0 altitude terms, so as to improve the fit in the 0 - 1200 km
region. The same set of weights were used for fitting both the forward and inverse coefficients.



3.2 CGM TO GEOCENTRIC TRANSFORMATION

For the inverse transformation, an inverse altitude dependent routine was written, based upon the
CGLALO9S inverse routine. The original CGLALO9S inverse routine uses the CGLALO95
routine together with a Newton-Ralphson algorithm for computing the inverse. The new routine
replaced the CGLALQ95 routine by a routine which uses the altitude dependent fourth order
polynomial fit of the direct spherical harmonic fit. For each of the 24 altitudes, the desired tables
were computed for a standard grid of CGM coordinates using the new routine.

The resulting 24 altitude inverse tables were used to generate the required spherical harmonic
expansion coefficients, and the latter used to compute the required inverse fourth order altitude
dependent polynomial spherical harmonic fits.

4. DESCRIPTION OF THE RESULTS

The original version (based upon the IGRF 90 magnetic field model) of the new code provided
a substantial improvement in the representation of the equatorial region, while retaining excellent
agreement with the Gustafsson tables (generated by the modified GEOCGM code) at the poles and
at medium latitudes. Figures 1 and 2 from the original report [Bhavnani and Hein (1994)] are
reproduced here for the convenience of the reader. Figure 1 is a graph of the CGM coordinates
from the corrected Gustafsson et al [1992] IGRF 1990 model tables. Figure 2 provides a similar
graph from the Baker/Wing code which was also computed from similar Gustaffson’s tables for
epoch 1987. Figures 3, 4 and 5 are graphs of CGM coordinates at 0, 800 and 7200 km altitude
obtained from the expanded version of the IGRF 95 model code. In Figures 4 and 5 there is a
marked bending of the constant geographic longitude curves at the edge of the equatorial gap for
certain longitudes. This bending is not an artifact, but reflects the CGM longitude variation of the
lines of constant geographic longitude in the vicinity of the dip equator.

Ideally, the output of the Geocentric to CGM calculations, fed into the inverse computation,
should reproduce the original input coordinate grid. This test of the consistency of the direct and
inverse transformations is illustrated in Figures 6, 7 and 8 for 0, 800 and 7200 km altitude. These
graphs exhibit some deviations from the uniform spacing of the original grid, particularly in the
vicinity of the poles, and in the vicinity of the South Atlantic Anomaly.

Since longitude differences at the poles are less relevant than at the equator, a more accurate
measure of the differences between the original coordinates, and those obtained from the
consistency calculation is the great circle arc between the coordinate pairs. Tables 1 and 2 provide
the fraction of table values which lie in the following error intervals (in degrees) for the
Geocentric ==> CGM == > Geocentric and (where they exist) the CGM == > Geocentric
==> CGM coordinates respectively:
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0°-0.1°, 0.1° - 0.2°, 0.2° - 0.5°, 0.5° - 1.0°, 1.0° - 2.0° and > 2.0°.

Thus, except for problems near the South Atlantic Anomaly, and near the “forbidden” band at
altitude, the new algorithm performs adequately throughout the 0 - 7200 km altitude regime. Tests
have been made for higher altitudes (extrapolating above 7200 km using the fourth order
polynomial fits), with the finding that there is a rapid degradation of the Geographic --> CGM
--> Geographic consistency calculations at altitudes above 8000 km.

TABLE 1. Inversion Error Analysis

GEOGRAPHIC == > CGM ==> GEOGRAPHIC

FRACTION OF ERRORS IN RANGE [deg]

ALT [km] 0.0-0.1 0.1-0.2 0.2-0.5 0.5-1.0 1.0-2.0 > 2.0
0 .75687 17790 .04931 .01186 .00406 .00000
100 .73439 .17697 .06523 .01404 .00905 .00031
200 .69039 .19913 .07803 .02060 .00936 .00250
300 .66167 .21192 .08458 .02715 .00968 .00499
400 .64232 .22253 .08895 .02903 .0099¢9 .00718
500 .63233 .21473 .10144 .03215 .01124 .00811
600 .62484 .21255 .10768 .03496 .01124 .00874
800 .61579 .20755 .11860 .03870 .01061 .00874
1000 .61517 .20724 .11923 .03995 .01155 .00687
1200 .62453 .20755 .11361 .03933 .01030 .00468
1600 .65418 .20787 .09800 .03246 .00749 .00000
2000 .68571 .20880 .08458 .01873 .00218 .00000
2500 .72878 .16948 .08177 .01561 .00437 .00000
3000 .69164 .15387 .12422 .02091 .00936 .00000
3500 .64669 .17915 .12921 .03246 .01217 .00031
4000 .64732 17197 .12609 .04151 .01311 .00000
4500 .66011 .16698 .12422 .03964 .00905 .00000
5000 .64950 20037 .10705 .04307 .00000 .00000
6000 .49938 .27372 .14950 .06117 .01623 .00000
7200 .54994 .23034 .12859 .06211 .02903 .00000
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TABLE 2. Inversion Error Analysis
CGM ==> GEOGRAPHIC ==> CGM

FRACTION OF ERRORS IN RANGE {deg]
Note: Points for which the CGM input values were not valid were excluded.

ALT [km) 0.0-0.1 0.1-0.2 0.2-0.5 0.5-1.0 1.0-2.0 > 2.0
0 .78277 .16479 .03839 .01373 .00031 .00000
100 .76220 .17514 .04844 .01355 .00068 .00000
200 .74395 .18091 .05876 .01389 .00249 .00000
300 .73099 .18385 .06725 .01499 .00292 .00000
400 .71021 .19407 .07733 .01577 .00263 .00000
500 .71059 .18769 .08108 .01764 .00300 .00000
600 .69985 .19136 .08719 .01890 .00270 .00000
800 .69802 .19008 .09008 .02024 .00159 .00000
1000 .70057 .19404 .08619 .01879 .00041 .00000
1200 .70791 .19402 .08249 .01557 .00000 .00000
1600 . 74866 .18638 .05959 .00538 .00000 .00000
2000 .79861 .16111 .04028 .00000 .00000 .00000
2500 .82589 .14633 .02778 .00000 .00000 .00000
3000 .79784 .13529 .06687 . 00000 .00000 .00000
3500 77244 .12500 -10203 .00053 .00000 .00000
4000 .76222 .12056 .11667 .00056 .00000 .00000
4500 .76910 .11458 .10127 .01505 .00000 .00000
5000 79225 .10590 .06481 .03704 .00000 .00000
6000 .65341 .18939 .08965 .06755 .00000 .00000
7200 .68452 17791 .06151 .06548 .01058 .00000

5. APPLICATION TO FIELD LINE TRACING

Field line tracing calculations are implicitly incorporated in the algorithm which generates altitude
dependent spherical harmonic coefficients for the direct (Geographic - > CGM) transformations.
Thus, although the algorithm was not developed for use as a field line tracing routine, it is possible
to use it for that purpose, since, by definition, the CGM coordinates along a field line (in either the
Northern or the Southern CGM hemisphere) are constant. Such use is limited by the accuracy of both
the Geographic to CGM and inverse computations, and the consistency of both these transformations.
The improvements in the consistency of the direct and inverse computations can be seen by
comparing Tables 1 and 2 with similar tables in Bhavnani and Hein (1994). The revised algorithm
exhibits a significant improvement for the purposes of field line tracing over the previous versions of
the algorithm.

The use of the algorithm for field line tracing would proceed as follows:

Compute the CGM coordinates for the initial point (altitude, geographic latitude and
longitude referenced to a spherical Earth).
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2. Use the computed CGM latitude and longitude, and the desired altitude for the end point, as
input to the inverse computation. Note, if the end point altitude is greater than that for the
initial point, it is possible that the field line trace never reaches the end point altitude. The
error flags must be checked to exclude this possibility. If the error flag is zero, then the
computed Geographic latitude and longitude is, to the accuracy limits of the algorithm, the
desired end point of the field line trace.

There are two ways of evaluating the performance of the revised algorithm for field line tracing:

L. Use a precise field line tracing routine to compute the geographic coordinates and altitudes
along a field line, and then use the revised algorithm to compute the corresponding CGM
coordinates for each point. Since the latter should be the same at each point on the field line,
the maximum angular deviation (along a great circle arc) should be a suitable measure of the
accuracy of the revised algorithm. '

2. Use a precise field line computation to compare the field line traces with parallel computations
using the revised algorithm as a substitute for field line tracing. Here, the great circle arc
difference between corresponding points is a suitable measure of the accuracy.

A test of the first type was performed for a uniform grid, for line traces from 7200 km to the ground,
and for 800 km to the ground. The maximum angular deviation (great circle arc) along each field line
(field line traces were output at intervals of ~10 km in altitude). Maps which exhibit the regions in
which the maximum deviation along a field line were greater than 0.2 degrees were also generated
for the two cases described above. Different symbols are used to indicate different "bins" for the
maximum deviation along the field line traces. Figures 9 and 10 are the maps for the 7200 km - 0 and
800 km - O cases.

The lack of a symbol at a grid point indicates that the maximum deviation along a field line beginning
at the specified geographic coordinates and altitude and ending at the ground is less than 0.2 degrees.
Otherwise, different symbols are used to indicate the range of maximum deviation, and, where it
exists, "straddling". As expected, the worst behavior is exhibited along the CGM equator in the
vicinity of the South Atlantic anomaly. Note that although the 800 km - O case performs better that
the 7200 km - O case at higher CGM latitudes, its performance is worse (by a factor of ~3) in the
South Atlantic Anomaly in the vicinity of the CGM equator. It should be expected that the
performance of the line tracing comparison will degrade at lower altitudes in this region.

Tests of the second type were also performed, for line tracing from 0 km to various altitudes, with

results similar to those already obtained. The worst behavior is found near the CGM equator in the
vicinity of the South Atlantic Anomaly. Table 3 provides a summary of the results.
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CGM COMPUTATIONS FOR 7200 km - O km Case

Fih sii1]
3 i 111 ]
= iig
g i
1 i
::-:’ t ) 3

$§.

700 ' 200 ' 300
Geographic Longitude [deg]

Symbols: + max. davietion 0.2 - 0.5, * 0.5-1.0. xt-2,0 > 2, 0 sweddle
Figure 9. Map (standard grid, Geographic Coordinates) indicating
grid points for which line traces from 7200 km altitude to ground
exhibit a maximum deviation (great circle arc) > 0.2 degrees. The
symbols used to indicate the range of maximum deviation: +: 0.2 - 0.5
deg, *: 0.5 - 1.0, x: 1.0 - 2.0, 0: > 2, O: "straddle” points.

CGM COMPUTATIONS FOR 800 km - 0 km Case
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Figure 10. Map, same as for Figure 9, for field line traces from 800
km altitude to the ground.
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TABLE 3. Comparison of Precise Line Trace Routine End Points with Those Generated
Using Revised Algorithm.

starting point of the line traces is 0 km, for points in a standard
coordinate grid. Differences are in degrees (Geographic Coordinates) for a
great circle arc. Note that the actual number of points for which the line
trace exists at a given altitude decreases with altitude.

Fraction of Data Points with differences in range

Alt [km] 0.0-0.1 0.1-0.2 0.2-0.5 0.5-1.0 1.0-2.0 >2

400 .60521 .25996 .09907 .02309 .00633 .00633
800 .53707 .28537 .12265 .03848 .01242 .00401
1600 .51619 .28470 .14590 .03725 .01153 .00443
2400 .45240 .35721 .14856 .03029 .00817 .00337
3200 .36471 .40278 .20165 .01852 .00772 .00463
4000 .36200 .36418 .23517 .02722 .00653 .004%90
4800 .33544 .38838 .22842 .03682 .00748 .00345
6000 .25155 .35167 .33127 .04326 .01607 .00618
7200 .27105 .29276 .35724 .05395 .01974 .00526

6. CONCLUSIONS

The IGRF 95 version of the CGM code developed by Bhavnani and Hein (1994) has been enhanced
by extending the altitude range from 0 - 2000 km to 0 - 7200 km. The revised version retains the
Cartesian spherical harmonic approach of Baker and Wing [1989] for geocentric to corrected
geomagnetic conversion (and the inverse) and continues to make use of auxiliary coordinates (dipole
coordinates at altitude) that are derived by applying a simple altitude adjustment algorithm to the
CGM latitudes. In this auxiliary coordinate system the magnetic equator discontinuity described
above is eliminated, permitting accurate fitting to 10th order spherical harmonic expansions. The
revised version differs from previous versions by performing a fourth order polynomial fit to the
spherical harmonic expansions generated at 24 fixed altitudes for both the direct and inverse

transformation.

Corrected geomagnetic coordinates are linked to field line tracing, and are thus used extensively for
particle mapping. There is also a need for a code to outline ionospheric effects at low latitudes. For
this reason, altitudes of 100 and 200 km were included in the altitude array used to generate the
revised IGRF 95 code (SFC95SREV). Users who are interested in such possible applications are
encouraged to use this revised code, and communicate with the authors, in order to develop future
improvements of the code.

The use of the new algorithm for approximate field line tracing was discussed, and several tests have
been described to examine the limitations of its use for this purpose. The results obtained indicate
that, with the exception of a region near the CGM equator, in the vicinity of the South Atlantic
Anomaly, the approximate results obtained may be suitable for many applications.
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Here, it is important to note that the line trace capability, although implicit in the new algorithm,
developed, not by design, but as a result of a desire to improve the original Kyle-Baker algorithm to
better represent the transformation from Geographic to CGM coordinates near the CGM equator and
lower CGM latitudes in general. Part of the software design constraints in the development of the
new algorithm were to utilize as much of the original Kyle-Baker FORTRAN code as possible. The -
unexpected line tracing use, and its apparent success, albeit partial, suggests that the imposition of
accurate field line tracing as a primary design requirement, without the above constraints, could result
in a greatly improved and more useful algorithm.

Assuming the use of the same algorithm for application to IGRF2000 and beyond, and the same order
spherical harmonic expansion, an update to the new CGM computation would only require the
replacement of the existing sets of spherical harmonic expansion coefficients with new sets
corresponding to the new magnetic field model for the direct and inverse transformations. The
procedure for computing the new sets of coefficients was described in Section 3. In the FORTRAN
code implementation of the new algorithm, this would be accomplished by replacing the existing
BLOCKDATA section of the source code containing the expansion coefficients table with a new
table.
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APPENDIX: GLOSSARY AND NOTES

The Earth’s magnetic field arises from contributions both within and external to it. For most near
Earth applications (typically 1 Earth radius), the external field may be ignored. The internal field is
described in terms of its geomagnetic potential, and is available in mathematical form as spherical
harmonic coefficients and their secular variations. This model is the responsibility of the International
Association of Geomagnetism and Aeronomy (IAGA), and is published periodically as revisions to
the International Geomagnetic Reference Field (IGRF). Those more interested in the history and
development of this subject are referred to the classic book Geomagnetism [Chapman and Bartels,
1940] which in turn describes the original work of Gauss, Schmidt who introduced Geomagnetic
Coordinates, and many others.

Ionospheric phenomena near Earth are intimately controlled by the Earth fixed geomagnetic field and,
because of the substantial and unnecessarily repetitive calculations involved in field line tracing,
simplified models and procedures become essential. Although the dipole and the offset dipole models
can be determined directly from the first and second order terms of the IGRF spherical harmonics and
are useful for conceptual purposes, field line traces cannot be inferred with adequate accuracy from
these models. Fortunately, the internal geomagnetic field is Earth fixed, and extensive a priori
computations can be carried out to provide tables which relate geographic locations to their
corresponding field line trace environment. This approach was used by Hultqvist [1958a, 1958b] to
define and introduce Corrected Geomagnetic Coordinates, and subsequently revisions were made by
Hakura [1965] and Gustafsson [1970]. Their work defines these coordinates with tables at the
surface of Earth only. Later work leading to our present effort is described in the main text of this
report.

Below we describe many of the terms covered or related to the present work. The asymmetrical
nature of the geomagnetic field has given rise to the need for dipole, eccentric (or offset) dipole,
corrected geomagnetic, and dip-pole representations, all of which are distinct in some manner. Thus,
for instance, geomagnetic field lines are not truly perpendicular to Earth’s surface at the corrected
geomagnetic poles, but rather at the dip-poles. The reader should also be aware that the field
undergoes a secular variation, and the assorted magnetic poles migrate one to a few kilometers per
year.

Altitude Dependent Corrected Geomagnetic coordinates:

Extension of Corrected Geomagnetic Coordinates to altitudes above Earth’s surface. Defined so that
all points along a field line in the Northern or Southern hemisphere (in this paper, as defined by the
dip equator) possess the same coordinates. Not part of Hultqvist’s original definition of CGM
coordinates.
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Corrected Geomagnetic (CGM) coordinates:

Earth fixed magnetic latitude and longitude. Altitude is undefined. Prescribed by Hultqvist and
Gustafsson and used in this report. Entails tracing along field lines to the dipole equator, and then
determining the geomagnetic coordinates corresponding to this point on the dipole equator as if it had
been reached by tracing along a pure dipole. Zero corrected geomagnetic longitude is the meridian
which passes through the geographic South Pole, with East positive.

Corrected Geomagnetic (CGM) coordinate Poles:

Locations in the polar regions from where internal geomagnetic field line traces effectively intercept
the dipole equatorial plane at an infinite distance. For Epoch 1990.0, the north and south corrected
geomagnetic poles are at 81.0°N latitude and 278.5°E longitude, and at 74.0°S latitude and 126.0°E
longitude, respectively. Inversely incidentally, the corrected geomagnetic coordinates of the
geographic north and south poles are at 82.30°N latitude and 170.89°E longitude, and at 73.89°S
latitude and 18.55°E longitude, respectively.

Dip Equator:

The plane at low latitudes where Earth’s field becomes horizontal, so that the magnetic dip angle is
zero. This resolves the problem with the Hultqvist procedure of tracing to the dipole equator, which
results in imaginary latitudes when the field line terminates inside 1 Earth radius. Field lines undulate
and the geographic latitude corresponding to zero CGM latitude sometimes had to be estimated by
curve fitting.

Dip Poles:
North and south polar locations where the geomagnetic field at Earth’s surface is vertical. Roughly
at 78°N latitude and 256 °E longitude, and at 65°S latitude and 139°E longitude, respectively.

Dipole:

Simple first order Earth centered representation of geomagnetic field. For epoch 1990, the first order
X Y,Z dipole moments are 1851, -5411, 29775 nanoTesla respectively, which places the dipole north
magnetic pole roughly at 79°N latitude and 289°E longitude, and the south magnetic pole at 79°S
latitude and 109°E longitude. The plane through the center of Earth normal to this axis determines
the dipole equator.

Dipole Equator or Eccentric Dipole Equator:

Since the eccentric offset is roughly in the plane of the pure Dipole equator, the same equatorial plane
through Earth’s center, normal to the axis of the poles, applies to Dipole or to Eccentric Dipole. See
Dipole and Eccentric Dipole.

Dipole Poles:
North and south intercepts of dipole axis with Earth’s surface. See Dipole.
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Eccentric (or offset) Dipole:

Field lines do not trace out normal to Earth’s surface at the dipole poles, but considerably removed
particularly for the South magnetic pole, which implies an eccentric rather than a centered dipole. The
next few terms in the representation of Earth’s field in IGRF 90 suggest an offset dipole centered
approximately at geocentric X,Y,Z rectangular coordinates -400, 270, 190 km respectively, roughly
in the direction of the Marianas Trench and farthest removed from the South Atlantic Anomaly.

Eccentric Dipole Poles:
North and south intercepts of eccentric dipole axis with Earth’s surface, roughly at 82°N latitude and
259°E longitude, and at 75°S latitude and 119°E longitude, respectively. See Eccentric Dipole.

Geocentric:

Earth centered. Since latitude is defined by the angle between the vector to the location and the
equatorial plane, geocentric coordinates imply a spherical Earth model. Magnetic field models, such
as the International Geomagnetic Reference Field (IGRF) use 6371.2 km as the mean Earth radius
to normalize radial distance and, for convenience, geocentric altitude refers to this radius when
describing particle locations and the geomagnetic environment.

Geodetic:
Refers to oblate Earth and the local horizontal plane. Not used or implied in this report.

Geographic coordinates:

Earth fixed latitude, longitude, and altitude. Although commonly loosely applied to geodetic or
geocentric, the spherical 6371.2 km radius of Earth applies throughout this report, with all latitudes,
altitudes, and field line trace terminations determined by this model. Geodetic and geocentric
longitudes are identical, with 0° passing through the Greenwich meridian, and East positive.

Geomagnetic coordinates:

Earth fixed magnetic dipole latitude and longitude. Altitude is undefined. The pure dipole axis is tilted
with respect to Earth’s axis and the poles approach the magnetic poles. Zero geomagnetic longitude
is the geomagnetic meridian which passes through the geographic South Pole, with East positive.

Inverse Coordinate Conversion:

Obtains geographic coordinates, given CGM coordinates. The reverse of the geographic to CGM
coordinate conversion. Since the conversions are altitude dependent, the altitude at which the
geographic coordinates are desired must be specified. Except for the fitting approximations arising
from analytical modeling, inversion following a coordinate conversion should return to the original
latitude and longitude.
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